Cloud Optical and Microphysical Properties: Updates for Collection 5

Michael D. King and Steven Platnick NASA Goddard Space Flight Center

- Enhancements in collection 4
- Summary of modifications and enhancements in collection 5
- Example results from tests
- Level-3 gridded products

Cloud Optical & Microphysical Properties

- Pixel-level cloud product during daytime at 1 km
 - Cloud optical thickness, thermodynamic phase, and effective radius
 - cloud phase determined from cloud mask tests, bispectral threshold (8.5 & 11 μm), shortwave infrared tests (1.6 and 2.1 μm), and cloud top temperature
 - > surface reflectance from MODIS ecosystem and albedo products
 - > solar reflectance technique using visible through midwave infrared bands
 - ✓ effective radius determined separately using 1.6, 2.1 (baseline), and 3.7 µm bands

Terra/MODIS Cloud Top Pressure (W. P. Menzel - NOAA/NESDIS, Univ. Wisconsin)

Collection 4

True Color Composite (0.65, 0.56, 0.47)

Cloud Top Pressure (hPa)

King et al. (2003)

August 10, 2001

Cloud Optical Thickness and Effective Radius (M. D. King, S. Platnick - NASA GSFC)

Aqua/MODIS Level-1B Image

 $R = 0.65 \, \mu m$

 $G = 0.56 \, \mu \text{m}$

 $B = 0.47 \, \mu m$

January 27, 2003 1340 UT*C*

Aqua/MODIS Cloud Effective Radius (M. D. King, S. Platnick et al. - NASA GSFC)

January 27, 2003 1340 UT*C* Collection 4

MODIS Cloud Optical & Microphysical Properties

Collection 4 corrections and enhancements

- Surface reflectance database based on MODIS white-sky albedo product at 1' (~ 2 km at the equator)
 - > Seasonal cycle based on sinusoidal fit poleward if 30° latitude using IGBP ecosystem classification as a proxy
- Thermodynamic phase tests drastically eliminated the high incidence of undetermined phase and enhanced the confidence in the retrieval processing path
- Fixed the large number of failed retrievals for ice clouds using 3.7 μ m
 - > Directly related to the 12 ice crystal models and their size relation to crystal habit—single scattering albedo is not a monotonic function of effective radius
- Smoothed transition from table lookups (small optical thickness) to asymptotic theory (large optical thickness)
 - > Led to solutions with missing retrievals at τ_c = 13 (water clouds) and τ_c = 8 (ice clouds)
- Added new QA flags that identified failed retrievals as well as no retrieval attempted, including polar darkness

MODIS Cloud Optical & Microphysical Properties

Collection 5 corrections and enhancements

- Add a 1.6 μ m vs 2.1 μ m retrieval algorithm for liquid water and ice clouds over snow and sea ice surfaces and ocean surfaces
 - Additional retrieval to baseline retrieval; especially useful for water clouds over bright reflecting surfaces or when aerosol overlies marine stratocumulus clouds
- Surface reflectance database based on MODIS white-sky albedo product at 1' (\sim 2 km at the equator)
 - Spatially complete spectral dataset every 16 days, based on collection 4 surface reflectance data from 2002
- Atmospheric correction
 - Rayleigh scattering: applied to 0.65 μ m band (land only), important for thin clouds with large solar/view zenith angle combinations
 - > Fixed cloud retrievals for thin clouds $(\tau_c \le 1)$
 - Atmospheric absorption: transmittance lookup table
 - Water vapor above-cloud column amount primary parameter, vapor profile of minor consequence; well-mixed gases a function of p_c
 - Ozone absorption: applied to 0.65 μ m band (land only)
 - Ozone absorption based on TOVS total ozone and Beer's Law

Cloud Optical & Microphysical Retrievals Retrieval space examples

Cloud Optical & Microphysical Retrievals Retrieval space examples

Cloud Optical Thickness in the Arctic

Cloud Effective Radius in the Arctic

MODIS Land Cover Classification

1 Evergreen Needleleaf Forest

2 Evergreen Broadleaf Forest

3 Deciduous Needleleaf Forest

4 Deciduous Broadleaf Forest

5 Mixed Forests

6 Closed Shrublands

7 Open Shrublands

8 Woody Savannas

9 Savannas

10 Grasslands

11 Permanent Wetlands

12 Croplands

13 Urban and Built-Up

14 Cropland/Natural Veg. Mosaic

15 Snow and Ice

16 Barren or Sparsely 17 Tundra

Surface Albedo Ecosystem + MOD43 (Strahler, Schaaf et al.) aggregation

Surface Albedo of Central America

July 12-27, 2001 Collection 3

MODIS Cloud Optical & Microphysical Properties

Collection 5 corrections and enhancements

- Implement uncertainty of cloud optical thickness and effective radius
 - Uncertainty based on model sensitivities and surface albedo, calibration, and atmospheric transmission uncertainties
- Implement algorithm to determine the presence of multi-layer clouds
- Retrieval produces a 'fill value' when the adjacent pixel is 'clear,' thereby eliminating small τ_c , large r_e retrievals around the edge of broken clouds
- If reflectance saturates at 0.86 μ m, switch to 0.65 μ m for retrieval
 - If τ_c > 100 and indeterminate, still retrieve r_e , which is well determined for large R_{vis}

Collection 5 minor modifications

- Add separate SDS in file for thermodynamic phase (Cloud_Phase_Optical_Properties)
- Set maximum solar zenith angle of cloud optical property retrievals to 81.4°
 - There was previously a difference between day/night for cloud mask and cloud optical properties
- Set ice water density to 0.93 g cm⁻³
 - This affects the ice water path computation
- Read the detector quality flag and uncertainty index in level-1b file to determine whether pixel is a good candidate for cloud retrieval (e.g., 1.6 μ m channels on Aqua)

Cloud Mask Tests over an Ocean Ecosystem

Final Thermodynamic Phase Tests

Aqua/MODIS Cloud Top Pressure (W. P. Menzel - NOAA/NESDIS, Univ. Wisconsin)

True Color Composite (0.65, 0.56, 0.47)

Cloud Top Pressure (hPa)

Collection 5 July 18, 2003

Cloud Optical Thickness and Effective Radius (M. D. King, S. Platnick - NASA GSFC)

Collection 5

July 18, 2003

MODIS Cloud Optical & Microphysical Properties

Collection 5 additional enhancements under study

- Sunglint screening and filtering
 - Sunglint screening from cloud mask eliminates many clouds in the tropics that we would like to retrieve
- SWIR thresholds in cloud phase decision tree are based on ratios of 1.6 and 2.1 μm to 0.65 μm for all ecosystems
 - The thresholds should vary by surface type and perhaps geographic region
- Heavy aerosol detection
 - Spatial variability tests being explored to eliminate dust that is being falsely identified as clouds over both ocean and land
- Replacement of forward libraries for ice clouds
- Integration of GMAO temperature and water vapor fields into ancillary input
 - Currently we are using NCEP data

Gridded Level-3 Joint Atmosphere Products (M. D. King, S. Platnick, P. A. Hubanks)

- Daily, 8-day, and monthly products (474.8, 883.2, 883.2 MB)
- 1° ×1° equal angle grid
- Mean, standard deviation, marginal probability density function, joint probability density functions

Monthly Mean Cloud Optical Thickness (M. D. King, S. Platnick et al. - NASA GSFC)

April 2003 (Collection 4)

Monthly Mean Cloud Effective Radius (M. D. King, S. Platnick et al. - NASA GSFC)

April 2003 (Collection 4)

Summary of MODIS Atmosphere Products

- Collection 4 reprocessing complete for Aqua; Terra and Aqua forward stream near real-time
- Image Production for Web site
 - 228 MB of images produced every day
 - > Terra & Aqua
 - > Level-1B daytime granules
 - > Level-3 daily, eight-day, and monthly products
 - > Level-3 high resolution daily product (10 km)
- Storage
 - 131 GB of disk space used to date
 - 1.9 million files
- Access metrics for 2002
 - 5,508,924 hits
 - 63,635 visits
 - 144 GB of data transferred
- Collection 5 enhancements and reprocessing to begin ~January 1, 2005